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Abstract
Dementia is a well-known syndrome and Alzheimer's disease (AD) is the main 
cause of dementia. Lipids play a key role in the pathogenesis of AD, however, 
the prediction value of serum lipidomics on AD remains unclear. This study 
aims to construct a lipid score system to predict the risk of progression from mild 
cognitive impairment (MCI) to AD. First, we used the least absolute shrinkage 
and selection operator (LASSO) Cox regression model to select the lipids that 
can signify the progression from MCI to AD based on 310 older adults with MCI. 
Then we constructed a lipid score based on 14 single lipids using Cox regression 
and estimated the association between the lipid score and progression from MCI 
to AD. The prevalence of AD in the low-, intermediate- and high-score groups 
was 42.3%, 59.8%, and 79.8%, respectively. The participants in the intermediate- 
and high-score group had a 1.65-fold (95% CI 1.10 to 2.47) and 3.55-fold (95% CI 
2.40 to 5.26) higher risk of AD, respectively, as compared to those with low lipid 
scores. The lipid score showed moderate prediction efficacy (c-statistics > 0.72). 
These results suggested that the score system based on serum lipidomics is useful 
for the prediction of progression from MCI to AD.
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1   |   INTRODUCTION

Dementia is prevalent in aging population. In 2015, the 
number of people affected by dementia worldwide was 
approximately 47 million and will  reach 75 million by 
2030 and 131 million by 2050.1 The age-standardized 
prevalence of dementia is approximately 5%–7% in elders 
(age greater than 60 years old) worldwide.1 Additionally, 
dementia leads to a considerable financial burden. The 
global economic costs of dementia were estimated to be 
more than 600 billion USD in 2010 and 818 billion USD 
in 2015.2 Alzheimer's disease (AD) is the most common 
cause of dementia and the fifth leading cause of death.3 
As a neurodegenerative disease, the progression is pivotal 
to AD patients. For those who progressed from normal 
cognition to AD,  mild cognitive impairment (MCI) is a 
transitional stage. Patients with MCI convert to dementia 
at a rate of 10% to 15% per year, which is approximately 
10-fold higher than the conversion rate in healthy people.4 
Therefore, early identification of the MCI patients with a 
high risk of conversion to AD is of great importance for 
both the patients and healthcare providers.

Prediction of AD is commonly based on the image of a 
brain scan or the analysis of cerebrospinal fluid (CSF).5,6 
For example, Udit Singhania and colleagues reported a 
predictive model based on brain Aβ which can predict 
AD risk with high accuracy (c-index = 0.904).6 However, 
these biomarkers are either invasive or too expensive for 
pre-clinical conditions. Compared with CSF biomarkers, 
blood biomarkers are more readily accessible for elders.7 
A number of blood biomarkers have been investigated for 
AD, including Aβ42,8,9 T-tau,10,11 P-tau18,12,13 P-tau217,14 
Aβ42/Aβ40.7,15,16 However, the findings were controver-
sial. For example, Mielke et al. proposed that plasma total 
tau and pTau181 levels were higher in AD dementia pa-
tients than those cognitively unimpaired.10 Nevertheless, 
a study from Mayo Clinic reported that plasma total tau 
did not predict cognitive decline among cognitively nor-
mal participants.11 Hence, there is still an urgent need to 
find reliable alternative blood biomarkers for early AD 
prediction.

Lipids, as one of the major components of the brain, 
play a key role in the pathogenesis of AD. A study from 
China found that cholesterol, high-density lipoprotein 
cholesterol (HDL-C), and low-density lipoprotein cho-
lesterol (LDL-C) levels have differential effects on neuro-
psychological performance.17 In 2017, a meta-analysis of 
17 cohort studies proposed that the association between 
dyslipidemia and the risk of cognitive decline is different 
in various stages of life.18 Nevertheless, the current anal-
yses of blood lipids and cognitive impairment are mainly 
based on the analysis of lipid profile that consists of total 
cholesterol, triglyceride, LDL-C and HDL-C. Lipidomics 

is a newly emerged discipline that studies lipids on a large 
scale based on analytical chemistry principles and techno-
logical tools, particularly mass spectrometry.19 Lipidomics 
involves systems-level identification and quantitation of 
thousands of pathways and networks of lipids molecular 
species. Several studies have applied lipidomics to evalu-
ate the link between specific lipid molecules and cognitive 
impairment, while most of them targeted the difference 
between cognitively normal elders and AD patients.20–22 
In this study, we explored the association between lip-
idomics and the progression from MCI to AD using the 
datasets from the Alzheimer's Disease Neuroimaging 
Initiative (ADNI).

2   |   MATERIALS AND METHODS

2.1  |  Study population

All data were obtained from the ADNI database (http://
adni.loni.usc.edu). The ADNI was launched in 2003 as a 
public-private partnership led by principal investigator 
Michael W. Weiner. Its primary goal is to test whether 
serial magnetic resonance imaging (MRI), PET, biological 
markers, and clinical and neuropsychological assessment 
can be combined to measure the progression of MCI and 
early AD. ADNI-1 is a non-randomized natural history non-
treatment study in which a total of 800 subjects, including 
Alzheimer's disease (AD), mild cognitive impairment 
(MCI), and cognitively normal (CN) older adult controls. 
They were recruited at approximately 50 sites in the 
United States and Canada for longitudinal follow-up. All 
enrolled subjects were between 55 and 90 years of age, had 
a study partner able to provide an independent evaluation 
of functioning, and will speak either English or Spanish. 
For up-to-date information, see www.adni-info.org. ADNI 
was approved by the institutional review boards of all 
participating institutions. Written informed consent was 
obtained from all participants and collateral informants 
at each site.

Among the 800 participants in ANDI-1, we excluded 
those with cognitive normal (CN) or Alzheimer's disease 
(AD). Participants with incomplete lipid information or 
without follow-up time were also excluded (Figure  1). 
Finally, 310 mild cognitive impairment (MCI) participants 
were included in our study.

2.2  |  Plasma lipid measurements

The plasma was analyzed by Baker Heart and Diabetes 
Institute, Metabolomics laboratory. The first step is lipid 
extraction. Pre-aliquoted 10 μL of blood plasma was mixed 
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with 100 μL of butanol-methanol (1:1 v/v) with 10 mM am-
monium formate which contained a mixture of internal 
standards. Samples were vortexed thoroughly and set in 
a sonicator bath for 1 h maintained at room temperature. 
Samples were then centrifuged (14 000× g, 10 min, 20°C) 
before transferring the plasma supernatants into sample 
vials with glass inserts for analysis. The supernatant con-
tained lipid components dissolved in organic solvents. 
Analysis of plasma extracts was performed on an Agilent 
6490 QQQ mass spectrometer with an Agilent 1290 series 
HPLC system and a ZORBAX eclipse plus C18 column 
(2.1 × 100 mm 1.8 μm, Agilent) with the temperature set at 
60°C. Through the interaction between the analyte and the 
surface of non-polar hydrophobic particles in the column, 
the hydrophobic phase was separated from the aqueous 
phase. Mass spectrometry analysis was performed in posi-
tive ion mode with dynamic multiple reaction monitoring 
(MRM). The solvent system consisted of solvent: (A) 50% 
H2O/30% acetonitrile/20% isopropanol (v/v/v) containing 
10 mM ammonium formate and 5 μM medronic acid; and 
(B) 1% H2O/9% acetonitrile/90% isopropanol (v/v/v) con-
taining 10 mM ammonium formate. The following mass 
spectrometer conditions were used: gas temperature, 
150°C, gas flow rate 17 L/min, nebulizer 20 psi, Sheath gas 
temperature 200°C, capillary voltage 3500V, and sheath 

gas flow 10 L/min. Isolation widths for Q1 and Q3 were set 
to “unit” resolution (0.7 amu). A total of 781 lipids were 
examined by the ADMC Lipidomic Meikle Lab.

2.3  |  Assessment of covariates

Covariates that may confound the relationship between 
lipidomics and conversion from MCI to AD were extracted 
from the merged file in the ANDI database (https://ida.
loni.usc.edu/pages/​acces​s/study​Data.jsp?proje​ct=ADNI). 
The covariates included demographic characteristics 
(age, sex, education years, race) number of apolipoprotein 
E (APOE4) ε4 allele, alcohol consumption, smoking, 
body mass index (BMI), family history of dementia, and 
medical history of hyperlipidemia, high blood pressure 
(HBP), and diabetes mellitus (DM). These covariates 
data were obtained from the ADCS (Alzheimer's Disease 
Cooperative Study) system.

2.4  |  Assessment of outcome

We collected diagnosis information and follow-up 
time for each participant from the ADNI database. The 

F I G U R E  1   Flowchart of participants 
selected. AD, Alzheimer's disease; MCI, 
mild cognitive impairment.
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diagnosis of MCI was based on subjective or objective 
memory declines evaluated by education-adjusted scores 
on the Logical Memory II subscale (Delayed Paragraph 
Recall) from the Wechsler Memory Scale-Revised (WMS-
R). The MMSE (Mini-Mental State Examination) score for 
MCI was between 24 and 30, the Clinical Dementia Rating 
(CDR) was 0.5, and Memory Box score should be at least 
0.5. The MMSE score for AD was between 20 and 26, the 
CDR was 0.5 or 1.0. Follow-up visits were carried out at 

six-month intervals either in person or by telephone con-
tact. Clinical and neuropsychological measures were col-
lected at baseline, while neuroimaging assessments were 
collected in the follow-up visits.

All data were obtained from the ADNI database. All 
participants were amnestic MCI at baseline and were fol-
lowed from the date of baseline until the first diagnosis 
of AD, last contact, or the end of the follow-up (April 15, 
2021), whichever came first.

Overall Stable MCI
Convert to 
AD p Value

Participant numbers 310 122 188

Age (mean [SD]) 74.59 74.30 (7.25) 74.78 (7.07) .560

Sex (%) .878

Female 114 (36.8) 46 (37.7) 68 (36.2)

Male 196 (63.2) 76 (62.3) 120 (63.8)

Education years (mean [SD]) 15.72 (2.95) 15.71 (3.12) 15.72 (2.83) .988

Race (%) .555

Asian 6 (1.9) 2 (1.6) 4 (2.1)

Black 11 (3.5) 6 (4.9) 5 (2.7)

White 293 (94.5) 114 (93.4) 179 (95.2)

Marry situation (%) .409

Divorced 19 (6.1) 10 (8.2) 9 (4.8)

Married 253 (81.6) 97 (79.5) 156 (83.0)

Widowed 36 (11.6) 15 (12.3) 21 (11.2)

Never married 2 (0.6) 0 (0.0) 2 (1.1)

APOE-ε4 allele (%) <.05

0 142 (45.8) 71 (58.2) 71 (37.8)

1 132 (42.6) 41 (33.6) 91 (48.4)

2 36 (11.6) 10 (8.2) 26 (13.8)

Alcohol consumption (%) 13 (4.2) 7 (5.7) 6 (3.2) .422

Smoking (%) 129 (41.6) 51 (41.8) 78 (41.5) 1.000

Family history of dementia (%) 129 (41.6) 45 (36.9) 84 (44.7) .214

SBP (mean [SD]) 135.72 (18.0) 133.87 (17.17) 136.93 (18.47) .144

DBP (mean [SD]) 74.83 (9.60) 74.98 (9.59) 74.73 (9.62) .820

BMI (mean [SD]) 26.14 (3.95) 26.61 (3.80) 25.83 (4.02) .087

Hyperlipidemia (%) 100 (32.3) 36 (29.5) 64 (34.0) .478

HBP (%) 122 (39.4) 49 (40.2) 73 (38.8) .908

DM (%) 9 (2.9) 5 (4.1) 4 (2.1) .507

CE (mean [SD]) 5.01 (1.03) 4.96 (1.01) 5.05 (1.05) .461

LDL_C (mean [SD]) 2.01 (0.48) 1.99 (0.45) 2.02 (0.50) .608

HDL_C (mean [SD]) 1.45 (0.37) 1.43 (0.37) 1.47 (0.38) .440

TG (mean [SD]) 1.22 (0.55) 1.19 (0.57) 1.25 (0.54) .363

Abbreviations: AD, Alzheimer's disease; BMI, body mass index; CE, cholesterol; DBP, diastolic blood 
pressure; DM, diabetes mellitus; HBP, high blood pressure; HDL_C, high-density lipoprotein cholesterol; 
LDL_C, low-density lipoprotein cholesterol; MCI, mild cognitive impairment, SBP, systolic blood 
pressure; TG, triglyceride.

T A B L E  1   Basic demographic 
characteristics of participants.
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2.5  |  Statistical analysis

We presented continuous baseline variables as mean ± 
standard deviation and categorical variables as count (fre-
quency). The least absolute shrinkage and selection op-
erator (LASSO) Cox regression model was applied for the 
selection of the subset of baseline plasma lipids that were 
related to progression from MCI to AD. LASSO allows the 
selection of multiple variables in high-dimensional set-
ting by shrinking the coefficients.23 This approach relies 
on the controls of penalization parameters. We used a 10-
fold cross-validation approach to optimize penalization. 
A total of 781 lipids were incorporated into the LASSO 
model.

We constructed a lipidomic risk score by multiplying 
the baseline lipids that were identified by LASSO regres-
sion, with the corresponding beta coefficients from Cox 
regression. Participants were then divided into low, inter-
mediate, and high-risk groups based on quantiles of the 
lipid score.

The Cox proportional hazards model was used to as-
sess the impacts of lipid score and common lipids on the 
risk of AD conversion. We calculated the hazard ratios 
(HRs) and 95% confidence intervals (CIs) by taking the 
low-score group as the reference. We adjusted for age at 
baseline (continuous) and sex (male or female) in the basic 
analysis model. In the multivariable-adjusted models, we 
controlled for years of education (continuous), race (Asia, 
Black, and White), number of apolipoprotein E (APOE4) 
ε4 allele (0,1,2), drinking (yes or no), smoking (yes or no), 
family history of dementia (yes or no), medical history of 
hyperlipidemia (yes or no), HBP (yes or no), DM (yes or 
no), BMI (continuous). We conducted subgroup analyses 
of the associations of each group with progression from 
MCI to AD by age (<75 years or ≥75 years), sex (male or fe-
male), years of education (<16 or ≥16), smoking histories 
(yes or no), family history of dementia (yes or no), history 
of hyperlipidemia (yes or no) and HBP (yes or no), BMI 
(<25 kg/m2 or ≥25 kg/m2). Time-dependent ROC curves 
were used to estimate the ability of prediction. A two-
tailed p value <.05 was deemed statistically significant. 
All analyses were performed by R version 4.1.2 software.

3   |   RESULTS

Table 1 presents the baseline characteristics of the partici-
pants. The average age of the 310 participants was 74.6 and 
114 (36.8%) elders were female. Most of them were white 
(94.5%) and the converted group had a high rate of family 
history of dementia (44.7%) compared with the stable MCI 
group (36.9%). The progression from MCI to AD was posi-
tively associated with the number of APOE-ε4 (p = .002).

Over a median follow-up of 3.37 years, 188 (60.64%) 
subjects converted from MCI to AD. Figure 2 shows the 
result of LASSO regression. Through the shrinkage of 
lipids variable coefficients, 14 single lipids which were 
related to AD progression, were included for the lipidom-
ics risk score, including Cer(d19:1/18:0), Cer(d19:1/20:0), 
PC(15-MHDA_20:4), PC(16:0_20:4), PC(P-15:0/20:4), 
PE(16:1_20:4), PE(P-15:0/22:6), PE(P-17:0/20:4), PE(P-
18:0/22:6), PE(O-18:0/22:6), deDE(20:4), FA(14:0), 

F I G U R E  2   Potential lipid predictor selection using least 
absolute shrinkage and selection operator (LASSO) Cox regression.

T A B L E  2   Results of Cox regression model.

β HR (95% CI)

Cer (d19:1/18:0) 0.03767 1.04 (0.84–1.29)

Cer (d19:1/20:0) 0.17916 1.20 (0.97–1.48)

PC (15-MHDA_20:4) 0.14377 1.16 (0.94–1.43)

PC (16:0_20:4) 0.04245 1.04 (0.84–1.29)

PC (P-15:0/20:4) −0.09361 0.91 (0.67–1.23)

PE (16:1_20:4) 0.11927 1.13 (0.94–1.35)

PE (P-15:0/22:6) −0.12225 0.89 (0.66–1.19)

PE (P-17:0/20:4) −0.25215 0.78 (0.58–1.05)

PE (P-18:0/22:6) 0.01088 1.01 (0.77–1.33)

PE (O-18:0/22:6) −0.19887 0.82 (0.64–1.04)

deDE (20:4) 0.29146 1.34 (1.18–1.52)

FA (14:0) 0.06887 1.07 (0.90–1.27)

FA (18:0) 0.11734 1.13 (0.96–1.32)

TG (O-54:4) [NL-17:1] −0.12731 0.88 (0.74–1.05)

Abbreviations: Cer, ceramides; FA, fatty acid; PC, phosphatidylcholine; PE, 
phosphatidylethanolamine; TG, triglyceride.
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FA(18:0), TG(O-54:4) [NL-17:1] (Table 2). β values of each 
selected lipids were used to construct the lipid risk score.

Table  S1 presents the importance of every selected 
lipid and its impacts on the progression from MCI to AD. 
Cer(d19:1/18:0), Cer(d19:1/20:0), PC(15-MHDA_20:4), 
PC(16:0_20:4), PE(16:1_20:4), deDE(20:4), FA(14:0), 
and FA(18:0) were positively associated with the risk 
of conversion, while PC(P-15:0/20:4), PE(P-15:0/22:6), 

PE(P-17:0/20:4), PE(P-18:0/22:6), PE(O-18:0/22:6), and 
TG(O-54:4) [NL-17:1] were negatively associated with the 
risk of conversion.

Table  3 shows the association between lipid score 
and conversion from MCI to AD. The lipid score was 
significantly associated with an increase in AD risk 
(p-trend < .001). Compared with participants with low 
lipid score, patients in the intermediate and high score 

HR (95% CI)

Age and sex 
adjustmenta

Multivariable 
adjusted modelb

Score (−3.33~3.46) 188/310 2.75 (2.19–3.45) 2.74 (2.16–3.48)

Risk by score group

Low 44/104 1.00 (Reference) 1.00 (Reference)

Intermediate 61/102 1.74 (1.18–2.57) 1.65 (1.10–2.47)

High 83/104 3.51 (2.42–5.10) 3.55 (2.40–5.26)

p-trend <.001 <.001
aAge and sex adjustment: model adjusted for age and sex.
bMultivariable-adjusted model: adjusted for age, sex, education years, race (Asian, Black, and White), 
APOE-ε4 carriers, history of alcohol drinking (yes or no), history of smoking (yes or no), family history 
of dementia (yes or no), medical history of hyperlipidemia (yes or no), medical history of high blood 
pressure (yes or no), medical history of diabetes mellitus (yes or no), body mass index.

T A B L E  3   The association between 
constructed lipid score and risk of 
progression from MCI to AD.

F I G U R E  3   Comparison of survival 
probability by different groups of lipid 
score.
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groups had a 1.65-fold (95% CI 1.10 to 2.47) and 3.55-
fold (95% CI 2.40 to 5.26) higher risk of AD, respectively. 
The log-rank test suggested that participants with high 
lipid score have higher conversion risk compared with 
those with intermediate or low score (Figure 3). In the 
high lipid score group, the proportion of participants 
with two APOE-ε4 alleles was higher compared with 
the low and intermediate groups at baseline (Table S2). 
Figure 4 shows that the ROC analysis presented favor-
able prediction efficacy at a follow-up time of 3 years 
(c-index = 0.74), 5 years (c-index = 0.73), and 10 years 
(c-index = 0.77).

In the subgroup analyses, the estimates for risk of AD 
conversion associated with lipid score seem not to differ 
according to age, sex, education years, family history of 
dementia, history of smoking, hyperlipidemia, and HBP. 
The risk of conversion with higher lipid score seemed to 
be lower among participants with normal BMI or who had 
APOE-ε4 carriers (p for interaction <.05) (Table 4). There 
was no sufficient evidence of association between serum 
cholesterol with risk of AD conversion (Table 5). Common 
serum cholesterol includes total cholesterol (TC), low-
density lipoprotein cholesterol (LDL-C), high-density lipo-
protein cholesterol (HDL-C), and triglyceride (TG).

4   |   DISCUSSION

In this study, we developed a lipid scoring system for pre-
dicting the risk of progression from MCI to AD. Our find-
ing suggests that patients in the high lipid score group have 
a higher risk of progression from MCI to AD compare with 

the intermediate or low scores group. Over a median fol-
low-up of 3.37 years, 188 (60.64%) subjects converted from 
MCI to AD. When the sample was restricted to 4 years of 
follow-up, the average conversion rate was 13.23% annu-
ally, which is consistent with results from other studies 
indicating that 12%–15% of amnestic MCI patients convert 
annually to AD.24

A number of studies have reported the associations 
between AD and serum cholesterol.25–27 However, the 
findings of these studies seem controversial. A study from 
Hyewon Lee pointed out that all lipid profiles (TC, LDL-
C, HDL-C, and TG) have a positive association with the 
risk of AD.28 Nevertheless, a case-control study suggested 
that higher TC and LDL-C, and lower HDL-C are associ-
ated with AD risk.17 Due to the limitation of conventional 
plasm cholesterol, many studies evaluated lipidomics with 
the progression of AD. In 2006, a study from the UK per-
formed a comprehensive lipidomics analysis of 300 par-
ticipants (152 CN and 148 AD) and found an association 
between lipids and AD. This study also combined 24 mol-
ecules to predict disease progression (R2 = .10),21 revealing 
that lipidomics has a robust link with AD. However, the 
transitional stage MCI was not included in this study.

The mechanism underlying the association between 
lipidomics and AD is still unclear. According to our re-
sults, several lipids have been linked with the progression 
from MCI to AD. Ceramides could increase the risk of 
conversion. A cohort study found that oligomeric Aβ1–40 
and Aβ1–42 can increase the activity of acid sphingomy-
elinase (aSMase) and neutral sphingomyelinase (nS-
Mase) by a redox-sensitive, cytosolic calcium-dependent 
phospholipase A2-arachidonic acid pathway, that lead 
to neuronal death through ceramides accumulation.29 
Phosphatidylcholine (PC), as a major constituent of bi-
ological membranes, is vital to neurons and glial cells. 
Thus, the disorders of PC may lead to the death of neu-
rons and glial cells.30 Short-chain fatty acids (SCFAs) 
can penetrate the blood–brain barrier or affect the brain 
through the intestine-brain axis.31 For example, Acetate 
was found to be downregulated in AD drosophila32 affect-
ing microglia and reducing blood–brain barrier permea-
bility.33 Other lipids have also been found to be associated 
with AD's progression.34–37 The alteration of lipids in the 
brain is related to aging and contributes greatly to the 
progression of AD.37 Combined effects caused by lipid 
dysregulation were observed in changes of intestinal 
microbiota,31 blood–brain barrier disruption,38 oxidative 
stress.39 A single lipid may minimally contribute to the 
progression, but the accumulation of several lipids could 
improve prediction and reflect the lipid metabolism for 
individuals, highlighting the significance of this study. In 
addition, in all participants with complete lipid profiles, 
we observed no associations between serum triglycerides, 

F I G U R E  4   Time-dependent ROC curves present prediction 
efficacy in 3 years, 5 years, and 10 years.
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total cholesterol, LDL cholesterol, and HDL cholesterol 
and AD progression. These findings highlight the rele-
vance of studying smaller lipid components because they 

signify specific steps in their biosynthesis and metabo-
lism that may be associated with AD. Further research 
is needed to investigate the specific lipid pathways that 
could be exploited to delay the progression of AD,40 
which means lipidomics can not only identify biomark-
ers to predict progression, but also pinpoint the target of 
novel therapeutics in the future.

A strength of this study is the comprehensive lipidom-
ics data. Our study focused on the transitional stage of AD 
and mainly analyzed the conversion from MCI to AD. The 
constructed lipid score can be a reference for the predic-
tion of AD's progression in future study. This study has 
limitations. First, the diagnosis was determined clinically 
and was not combined with imaging or other sensitive bio-
markers (e.g., CSF amyloid, tau, and neurodegeneration 
[ATN] biomarkers or neurofilament light chains), which 
reduces the significance of our findings. In addition, the 

Subgroup Low Intermediate High
p for 
interaction

Age .757

<75 1.00 (Reference) 1.50 (0.84–2.70) 3.87 (2.17–6.90)

≥75 1.00 (Reference) 2.01 (1.08–3.72) 4.04 (2.17–7.51)

Sex .892

Male 1.00 (Reference) 1.82(1.11–2.98) 3.827(2.31–6.34)

Female 1.00 (Reference) 1.64(0.76–3.55) 3.784(1.90–7.53)

Education years .917

<16 1.00 (Reference) 1.83 (0.90–3.73) 3.70 (1.82–7.50)

≥16 1.00 (Reference) 1.75 (1.05–2.91) 3.31 (2.03–5.39)

APOE-ε4 allele .042

No 1.00 (Reference) 2.88 (1.51–5.50) 4.35 (2.19–8.64)

Yes 1.00 (Reference) 1.17 (0.69–2.00) 3.38 (2.04–5.59)

Smoking .681

No 1.00 (Reference) 1.58 (0.94–2.65) 3.80 (2.31–6.26)

Yes 1.00 (Reference) 1.92 (0.98–3.79) 3.74 (1.86–7.54)

Family history of dementia .431

No 1.00 (Reference) 1.74 (1.01–3.02) 3.80 (2.28–6.34)

Yes 1.00 (Reference) 1.92 (1.03–3.59) 3.69 (1.94–7.01)

BMI .037

<25 1.00 (Reference) 1.78 (0.96–3.31) 3.59 (1.95–6.60)

≥25 1.00 (Reference) 1.70 (0.99–2.92) 3.74 (2.19–6.39)

Hyperlipidemia .491

No 1.00 (Reference) 1.68 (1.05–2.71) 3.00 (1.87–4.81)

Yes 1.00 (Reference) 1.99 (0.85–4.67) 5.27 (2.42–11.48)

HBP .877

No 1.00 (Reference) 1.59 (0.95–2.66) 3.57 (2.22–5.75)

Yes 1.00 (Reference) 1.89 (0.93–3.83) 3.85 (1.84–8.04)

Note: Estimated effects were based on the multivariable-adjusted model (see footnote in Table 3).
Abbreviations: BMI, body mass index; HBP, high blood pressure.

T A B L E  4   Subgroup analyses 
of groups of lipid score and risk of 
progression.

T A B L E  5   The association between conventional serum 
cholesterol and risk of progression from MCI to AD.

HR (95% CI)

Age and sex 
adjustment

Multivariable-
adjusted 
model

CE 1.06 (0.92–1.23) 1.09 (0.93–1.28)

LDL_C 1.04 (0.90–1.20) 1.07 (0.91–1.25)

HDL_C 1.11 (0.95–1.29) 1.10 (0.93–1.29)

TG 1.03 (0.90–1.17) 1.02 (0.90–1.17)

Abbreviations: CE, cholesterol; HDL_C, high-density lipoprotein cholesterol; 
LDL_C, low-density lipoprotein cholesterol; TG, triglyceride.
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sample size is small, and the results need to be validated 
in other population.

5   |   CONCLUSION

This study established a serum lipidomics scoring system 
that is useful for predicting the risk of progression from 
MCI to AD. The findings might be used for developing 
novel therapeutics targeting specific lipids in the future. 
As our study design is observational, more studies are 
needed to validate these associations in the future.
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